The shape sort of stuck in my mind and last night I finally got around to making two shapes inspired by Phelp’s shape. My shapes are not the same as his – one of my ideas for this project was to see if the boys could see that the shapes were not the same.

So, we started today’s project by looking at the two shapes I printed overnight. As always, it is really fun to hear kids talk about shapes that they’ve never encountered before.

Next we looked at Phelp’s tweet. The idea here was to see if the boys could see the difference between this shape and the shapes that I’d printed:

Finally, we went up to the computer so that the boys could see how I made the shapes. Other than some simple trig that the boys have not seen before, the math used to make these shapes is something that kids can understand. We define a pentagon region by 5 lines and then we vary the size of that region.

I’m not expecting the boys to understand every piece of the discussion here. Rather, my hope is that they are able to see that creating the shapes we played with today is not all that complicated and also really fun!

This was a really fun project – thanks to Steve Phelps for the tweet that inspired our work.

My older son is re-working his way through Art of Problem Solving’s Introduction to Counting and Probability. He came across a problem in the review section for chapter 5 that gave him some trouble. I decided to talk through part of it tonight and included my younger son.

My younger son hasn’t been studying any counting lately, so I was expecting the problem to be pretty challenging for him. His work through the first part of the problem is, I think, a nice example of a kid working through a challenging math problem.

The problem is this: How many different ways are there to put 4 distinguishable balls into 3 distinguishable boxes?

The next problem is what was giving my son some trouble: How many different ways are there to put 4 distinguishable balls into 3 indistinguishable boxes?

My younger son struggles with the problem for a bit on this one and then my older son offers his thoughts. What gives my older son a little trouble is the case in which you put 2 balls into one box and 2 into another.

So, after struggling with 2-2-0 case in the last video, we talk about it in a little more depth here. The tricky part is seeing that two cases that don’t look the same are actually the same. It was harder for the boys to see the over counting than I thought it would be. But, we made it!

So, the indistinguishable counting part was pretty confusing to the boys. I think we need to do a few more problems like this to let this particular counting concept sink in.

Heard a neat problem on a math podcast today which basically boils down to this question:

If I give you a square (or a bunch of squares) of side length 1, how can you make a square with area 2?

I thought trying out this question with both of the boys would be pretty fun. Here’s how it went:

(1) My younger son went first

(2) My older son went second

Next I thought it would be interesting to extend the problem a little bit and ask them to try to create a square with area 3. To my surprise this problem was significantly more difficult – the two video below are roughly 9 min each.

(3) My younger son went first:

(4) My older son went second

I was surprised at how much more difficult the 2nd problem was for both kids. I was also surprised that they approached it the same way (my older son wasn’t home when I did the project with my younger son so it really was a coincidence).

Would be fun to find some more problems like this one.

A tweet last week from John Baez made for a really fun week of playing around. I’ve written several blog posts about it already. Here’s the summary to date, I guess:

(3) A video from a comment on one of the posts from Allen Knutson that helped me understand what was going on a bit better:

So, with that as background, what follows are some final (for now at least) thoughts on what I learned this week. One thing for sure is that I got to see some absolutely beautiful math:

Playing with the "juggling roots" and printing some of the structures has been the most fun I've had with math in ages. #math#mathchatpic.twitter.com/4cL583Ix2y

For this blog post I’m going to focus on the 5th degree polynomial . I picked this polynomial because it is an example (from Mike Artin’s Algebra book) of a polynomial with roots that cannot be solved.

So, what do all these posts about “juggling roots” mean anyway?

Hopefully a picture will be worth 1,000 words:

What we are going to do with our polynomial is vary the coefficients and see how the roots change. In particular, all of my examples below vary one coefficient in a circle in the complex plane. So, as the picture above indicates, we’ll look at all of the polynomials where moves around a circle with radius 8 centered at 10 + 0 I in the complex plane. So, one of our polynomials will be , another will be , another will be , and so on.

The question is this -> how do the roots of these polynomials change as we move around the circle? You would certainly expect that you’ll get the same roots at the start of the trip around the circle and at the end – after all, you’ve got the same polynomial! There’s a fun little surprise, though. Here’s the video for this specific example showing two loops around the circle:

The surprise is that even though you get the same roots by looping around the circle, with only one loop around the circle two of the roots seem to have switched places!

Here’s another example I found yesterday and used for a 3d print. Again for this one I’m varying the “2” coefficient. In this case the circle has a radius of 102:

When I viewed this video today, I realized that it wasn’t clear if 3 or 4 roots were changing places in one loop around the circle. It is 4 – here is a zoom in on the part that is tricky to see:

Next up is changing the “-16” in the x coefficient in our polynomial. Here the loop in the complex plane is a circle of radius 26:

Finally, there’s nothing special about the coefficients that are 0, so I decided to see what would happen when I vary the coefficient of the term that is initially 0. In this case I’m looping around a circle in the complex plane with radius 20 and passing through the point 0 + 0i:

So – some things I learned over this week:

(1) That the roots of a polynomial can somehow switch places with each other as you vary the values of the coefficients in a loop is incredible to me.

(2) The idea of thinking of these pictures as slices of a 3-dimensional space (which I saw on John Baez’s blog) led to some of the most visually striking 3d prints that I’ve ever made. The math here is truly beautiful.

(3) I finally have a way to give high school students a peek at a quite surprising fact in math -> 5th degree polynomials have no general solution.

Kids will use a lot of nice introductory geometric ideas in simply describing the shape:

Next we talked about some of the basic properties of the pentagon. It was a bit of a tricky conversation since my older son knows quite a bit about equations of lines and my younger son really hasn’t seen equations of lines at all. So, for this part I let my younger so do most of the talking.

In this part we talk a bit about coordinates and equations of lines that are parallel to the x and y axis.

At the end we moved to the tricky part – how do we describe the final two lines. Describing these lines is even a little bit harder since we want the two line segments to have the same length. How do we do that?

At the end of the last movie we found a way to make the final two line segments have the same length. Now we needed to write down the equation of those two lines. This part took a while because my younger son was essentially seeing the math ideas here for the first time, but I’m glad we went slowly. He seemed to get a lot out of it.

If you are interested, the Mathematica code to make the pentagon looked like this:

I love using 3d printing to talk about 2d geometry ideas. The conversations that you have about making the shapes are really fun conversations about basic geometric and algebraic ideas. Since you either have the shape made already or are in the process of making the shapes, the conversations are really easy to get going ðŸ™‚

I couldn’t wait to try out this problem with the boys tonight. We aren’t (obviously!) going to go into a lot of depth – this isn’t really a problem for 5th graders! But, I thought the boys would have some fun talking about it.

Since the problem is a pretty challenging one for kids to even understand, I started the project by trying to explain the problem carefully.

Next we tried to pick some points at random and then draw some triangles. If there are infinitely many equilateral triangles passing through these 3 points, it ought to be easy to draw one of them, right?

My older son went first. The cool thing for me in both this and the next video was seeing kids experience the problem and struggle with both trying to understand it and trying to solve it. There really is a lot of great geometry for kids here:

Next my younger son gave it a try. His approach was absolutely terrific to watch – I never would have approached the problem the way he did.

Next we went to play with Suzanne von Oy’s Desmos program. We got interrupted by the new puppy in the house across the street between leaving the living room and heading upstairs to play with the program, so I took the first minute of this video to review the problem again.

My older son went first again. He quickly found a picture that didn’t satisfy the conditions of the problem and that threw him for a little loop. Once we got past that, though, he seemed to have a much better understanding of the problem.

My younger son went next and eventually found an arrangement of the points that didn’t work at all. That was actually a really cool surprise ( we’ll deal with that surprise in the next video).

So, we got a wonderful surprise in the last video when we stumbled on an arrangement of the three points that didn’t seem to have any equilateral triangles passing through them.

Talking about what went wrong was a fantastic little surprise and it really made this project for me.

This was a super fun project. Thanks so much to Matt Enlow and Suzanne von Oy for sharing both the problem and the Desmos activity. Math twitter is amazing!

I saw this problem today when it was re-tweeted by Matt Enlow:

I wonder if this is enough information to figure out the dimensions of a square. If not, I wonder what squares are possible. pic.twitter.com/oZry1z9U5C

It is a little advanced for my younger son, but I still thought it would be fun to turn into a mini project tonight with the boys.

We started by talking through the problem and taking a guess at what we thought the answer was -> Is there enough information to determine the side length of the square?

Although we didn’t really make any progress towards a solution in this initial discussion, I really like the ideas that we talked about. Specifically, I liked how much thought my older son put into how to label the diagram.

In this part of the project we began to discuss how to solve the problem. We found two equations, but had 3 variables. My older son began to think that we weren’t going to find a solution.

In trying to simplify one of our equations my younger son made a common algebra mistake. I spent most of the video slowly showing him how to tell that the algebra he thought was right was actually off.

At the end of the last problem we found an equation that seemed to be a step in the right direction of finding a solution to the problem. In this part of the project we explored that equation.

At the beginning my older son was really confused. I think he’s used to seeing problems where there is always a solution – the open endedness of this problem seemed to leave him puzzled.

We did get our sea legs back, though, exploring a few specific cases. The happy accident was that the two solutions we found to the problem gave us the same perimeter for the square – was a unique solution hiding here?

To wrap up the project we went up to the computer to look at our equation using Mathematica. We’d covered the important mathematical ideas already, but finding some of the exact solutions was going to be a chore and certainly finding the maximum perimeter wasn’t going to be in reach.

Nonetheless, there were a few fun surprises to be found ðŸ™‚

I thought doing some mathematical coloring would make for a great project today.

My older son talked about his coloring project first – he chose a section of the book on a random walk dice game. It was fun to hear his thoughts on random walks (and walks constrained like the one in this activity). By coincidence Kelsey Houston-Edwards recently did a video on random walks, so there’s a really nice way to continue the discussion we had here.

My younger son chose a section on “snug bunnies” – a picture of bunnies tiling the plane. He picked this section because he likes tesslations. It was fun to hear him talk about his coloring pattern. At the end we took a look at some Penrose tiles just to extend the tiling idea.

I really enjoyed the project today – the seemingly simple act of coloring led to some really fun discussions and also gave me some ideas for fun follow up projects.

We’d taking a break from our inclusion / exclusion project but I wanted to return to it tonight. I picked a fairly challenging problem from one of my old math books:

How man 5 card poker hands have at least one card from each suit?

I didn’t have any idea how it would go . . .

We started by reviewing the ideas in inclusion / exclusion and the moved on to try to get our bearings in the problem:

Having formed a pretty good plan in the first video, we moved on to tackling the rest of the problem.

I’m really happy with how this went. It is fun to see the boys learning to break complicated problems down into problems that are slightly easier to deal with.

I think the ideas from the talk can provide kids with a really wonderful opportunity to explore math. We’ll hopefully revisit the ideas many times!

Today’s exploration follows the same line of ideas that we followed in the first project. The procedure we are looking at goes like this:

(1) Start with the number 1, and proceed to step 2.

(2) Whatever number you get here, cycle the digits to the left -> so, 123 becomes 231, 1045 becomes 0451 (so just 451 for computations), 110110 becomes 101101, and etc . . .

(3) Now multiply the number from step 2 by a fixed number N and add 1.

(4) Take the output from (3) and return to step (2).

We look at the sequence of outputs from this procedure in base 2, 3, 4, and 5 today. Quite amazingly, Stephen Wolfram showed that this entire procedure could be done with some very short code in Mathematica. Here’s a pic of the short code and also patterns we see in the digits when we multiply by 1, 2, 3, 4, 5, 6, and 7 at each step when we reun the procedure above in base 4.

If this seems way too complicated I’m not explaining the procedure well enough – go back to our first post on the subject or to Wolfram’s blog. I promise you’ll see that the explorations are totally accessible to kids.

Â We started our project today by revisiting the results in base 2 and looking for strange or unusual or really anything that caught our eye in the digit patterns.

Also, I’m sorry that the zoomed in shots are so fuzzy (so, the first minute here and basically all of the 4th video). I didn’t realize how bad the footage was until it was published. Even with the fuzziness, though, you can still hear how engaged this kids are and how interesting it was for them to explore all of the strange patterns:

For the 2nd part of the project we looked at the patters of the digits in base 3:

Then we looked at base 4 and immediately saw something that we’d not seen before:

So, having explored bases 2, 3, and 4 we went back to some of the patterns we’d seen and got a nice surprise – we were able to find structure in some of those patterns. This video is the exploration that led to us finding the pattern in base 2.

Again, I’m sorry this video is so fuzzy – wish I would have caught that when we were filming ðŸ˜¦

Now we moved on to exploring some of the patterns that we’d seen in base 3 and base 4 – that exploration allowed us to predict a pattern in base 5 even though we’d not yet looked at any of the digit patterns in base 5!

I can’t wait to play with Wolfram’s ideas a bit more. The ideas are such a great way to expose kids to exploration in math!