Saw a neat tweet earlier today about 3d printing, math, and engineering:

Rice University scientists have successfully 3D printed Hermann Schwarz' Schwarzites: theorized minimum surfaces having negative Gaussian curvature. https://t.co/hEpVK0GH7M@RiceUniversity@RiceUNews

The grey shape displayed in the article is a “made thicker for 3d printing” version of the surface I thought it would be fun to print that shape today and use it for a little project with the kids tonight. Here’s the Mathematica code and what the print looks like in the Preform software:

Generating an approximation to the shape isn't that difficult (and might be a fun intro 3d printing exercise for a Trig class). Cleaning up the final prints and getting rid of the supports is going to be a bit of a headache, though. pic.twitter.com/YSTRs3wx5Y

8 hours later the print finished and I asked the boys to describe that shape plus the gyroid. It is always fascinating to hear what kids see in unusual shapes. My younger son went first:

Here’s what my older son had to say (and he’s starting to study trig, so we could go a tiny bit deeper into the math behind the shape I printed today):

Next we watched the video about the shapes made by Rice University:

After watching the video I asked the boys to talk about some of the things they learned:

Of course, mostly they didn’t want to talk about the shapes – they wanted to stand on them! So much for an 8 hour print and 45 min of trying to clean out the supports . . .

Here’s how the standing went:

Definitely a fun project and a fun way to show kids a current application of both theoretical math and 3d printing!

Today I decided to revisit that project. We started by looking at the same idea from algebra:

Does ?

At first we talked about the two equations using ideas from algebra and arithmetic.

/

Now I asked the boys for their geometric intuition and then showed them the 3d printed graphs of the two functions.

This part ran a little long while my younger son was stuck on a small but important point about the graph – I didn’t want to tell him the answer and it took a couple of minutes for him to work through the idea in his mind.

/

Next I showed them 3d prints of and and asked them to tell me which one was which. It is really neat to hear the reasoning that kids use to go from shapes to equations.

/

For the last part of the project I asked the boys to come up with their own algebra “mistakes” for us to explore. My older son chose to compare the graphs of and .

/

My younger son chose the two equations and . Changing the + to a – in our first set of equations turns out to have some pretty interesting geometric consequences – “it looks sort of like a saddle” was a fun comment.

One especially interesting idea here was exploring where . We used Mathematica’s ContourPlot[] function to explore those two lines because those lines weren’t immediately obvious on the saddle.

/

I’m happy to have had the opportunity to revisit this old project. I think exploring simple algebraic expressions is a fun and sort of unexpected application of 3d printing.

My older son has just started the trigonometry this week. I know the topic can be a little dry at the beginning, so I wanted to show him more than just unit circle exercises.

Today we looked at a few fun curves that you can make just by playing around with trig functions.

I stared by showing some simple graphs and then we moved to some 3d shapes:

Next we took a cue from an old project inspired by Henry Segerman:

Hopefully both the shape and the shadows come through in the filming – I haven’t figured out how to shoot shadows very well yet.

Finally I let the kids play around with the Mathematica code for a bit to create their own shapes. They had a couple of pretty fun ideas.

There was one little issue that came up on my younger son’s plot, unfortunately. I didn’t have enough detail in the plot to multiply the range by 10. That’s why his picture fuzzed out quite a bit. I didn’t see the problem on the fly, though, and wasn’t able to fix it in real time.

I’m excited to help my son learn about trig. Hopefully a few projects like this one will help him see that that there’s more to trig than just triangles!

I’ve been thinking about exposing the boys to math through 3d printing lately. Today I decided to explore making Paula Beardell Krieg’s cube shapes with them. Here’s the exploration the boys did back in March when we first got them:

Even though we’ve played a bit with these shapes before I still thought that thinking through these yellow and pink shapes would be a fun challenge. The project turned out to be a tiny bit harder than I thought it would be, but it still was a nice conversation.

We started by first looking at the three pyramids that can come together to make a cube and continued by looking at what happens when you slice those shapes in half.

In the last video the boys were thinking about trying to describe these shapes by describing the lines that formed the edges. At the beginning of this video I told them that this particular approach was going to be tough since they didn’t know how to write equations of lines in 3 dimensions.

So, I had them continue to search for properties of the shapes that they could describe.

The boys were still struggling to find some ideas about the shape that went beyond the lines on the boundary, but we kept looking.

My older son hit on the idea that the shape was made from “stacking squares on top of each other.” We spent the rest of the video exploring that idea.

Now that we had the idea about stacking squares we went to Mathematica to try to create the shape. It took a few steps to move from the ideas about the squares to generating the code for the shape. We didn’t get all the way there during this video, but we did figure out how to make a cube.

Unfortunately I had to end the video since the camera was about to run out of memory.

While I was getting the videos off the camera the boys worked on how to change the cube shape to the pyramid shape. It was a good challenge for them and they got it. We talked about that shape for a bit and then moved on to the challenge of creating the “pink” and “yellow” shapes that Paula Beardell Krieg created from paper.

We had a little bit of extra time today and it was fun to walk through this challenging problem. I think creating shapes to 3d print is a really fun way to motivate math with kids. Can’t wait to use the printed shapes in a project tomorrow!

Yesterday I was able to watch the Global Math Project presentations (well, most of them) via the Facebook Live feed. Hopefully those videos will be preserved here:

One tank that caught my eye was given by Henry Segerman. I’d guess that his work and Laura Taalman’s work account for at least 80% of what I know about exploring math through 3d printing.

As I write this post there are 96 prior posts with the “3D Printing” tag on my blog. 3D Printing is still pretty new, and I think many people around math are only starting to see its use in education. Segerman’s talk made me want to throw together a list of fun projects that we’ve done just in case anyone is looking for a starting point after seeing his talk.

Some of my original thoughts on exploring math through 3d printing can be found in this blog post from March 2014 which features two really neat videos from Brooklyn Tech and Laura Taalman:

(1) James Tanton’s Geometry Problem and 3d printing

Since this blog post was inspired by a talk a James Tanton’s Global Math Project, it seems appropriate to kick it off with a project inspired by Tanton:

What is surface area of figure formed by all points within a distance 1 from a regular tetrahedron with faces of area 1?

(2) Hard to highlight just one project that Segerman Inspired, so here’s the first of 2

One of the Segerman’s examples in yesterday’s talk was about bubbles. He showed a few complicated bubble examples but there are simple ones that are amazing, too. Here’s an example showing that the “bubble” formed by dipping a tetrahedron in soap is the same shape as a 4-dimensional shape:

(6) Exploring connections between algebra and geometry

3d printing can come in handy for looking at math ideas that previously you could only study on paper or on the computer screen. For example, a common algebra mistake is to think that:

Here’s what these two surfaces look like:

Here’s two projects exploring these algebra ideas with the boys:

(8) 3d printing can be a fun way to review ideas from elementary geometry

In his talk yesterday Segerman mentioned a few prints that his undergraduate students created. As he showed this projects he talked about how the creation process really helps students understand and explore the underlying math.

In the project below, creating the shape of the tile helped me review and explore equations of lines with the boys:

After getting some intuition from this problem we extended the problem to 4 dimensions using Taleb’s approach. The prints were really fun to play with and it is amazing to hear kids talk about these shapes that come from 4 dimensions:

But 3d printing can help you see even more advanced ideas. Here’s a cube inside of a dodecahedron, for example:

and, of course, many (most!) of examples that Henry Segerman showed in his talk yesterday are perfect for showing how 3d printing can help everyone experience some advanced ideas in mathematics.

I’ll end with the project we did yesterday, which is a delightful example of how 3d printing can help you explore a math idea:

[Note: 10:30 am on Oct 7th, 2017 – had a hard stop time to get this out the door, so it is published without editing. Will (or might!) edit a bit later]

About two years I found an amazing design by Steve Portz on Thingiverse:

Today we revisited the idea. We began by talking generally about the volume of a cylinder:

The next part of the project was heading down the path to finding the volume of a cone. I thought the right idea would be to talk first about the volume of a pyramid, so I introduced pyramid volume idea through snap cubes.

Also, I knew something was going a little sideways with this one when we were talking this morning, but seeing the video now I see where it was off. The main idea here is the factor of 3 in the division. Ignore the height h that I’m talking about.

Next we looked at some pyramid shapes that we’ve played with in the past. The idea here was to show how three (or 6) pyramids can make a cube. This part was went much better than the prior one 🙂

The ideas here led us to guess at the volume formula for a cone.

Now that we’d talked about the volume formulas for a cone and a cylinder, we could use the 3d print to guess at the volume formala for the sphere.

With all of that prep work behind us, we took a shot at pouring water through the print. It worked nearly perfectly 🙂

I am really happy that Steve Portz designed this amazing 3d print. It makes exploring some elementary ideas in 3d geometry really fun!

Steven Strogatz had great series of tweets about math education earlier in the week. These two have stayed in my head since he posted them:

I know that last year Strogatz taught a college level course similar to the one he is describing in the tweets. We even used a couple of his tweets about the course material for some fun Family Math activities. For example:

Unusual intuitive argument for why A= pi r^2 for a circle, found by one of the tables in our #math exploration class. I love these surprises pic.twitter.com/dch9PfmynZ

So, thinking back to projects like those got me thinking about all sorts of other ideas you could explore in an appreciation course. At first my ideas were confined to subjects that are traditionally part of pre-college math programs and were essentially just different ways to show some of the usual topics. Then I switched tracks and thought about how to share mathematical ideas that might not normally be part of a k-12 curriculum. Eventually I tried to see if I could come up with a (maybe) 3 week long exploration on a specific topic. I chose folding and thought about what sort of ideas could be shared with students.

Below are 9 ideas that came to mind along with 30 second videos showing the idea.

(1) A surprise book making idea shown to me by the mother of a friend of my older son:

(2) Exploring plane geometry through folding

We’ve done many explorations like this one in the last couple of years – folding is an incredibly fun (and surprisingly easy) way for kids to explore ideas in plane geometry without having to calculate:

Here’s one introductory example showing how to find the incenter of a triangle:

(3) The Fold and Cut theorem

Eric Demaine’s “fold and cut” theorem is an fantastic bit of advanced (and fairly recent) math to share with kids. Our projects exploring “fold and cut” ideas are here:

[space filled in with random words to get the formatting in the blog post right 🙂 ]

(5) An amazing cube dissection made by Paula Beardell Krieg

We’ve also done some fun projects with shapes that I wouldn’t have thought to have explored with folded paper. Paula Beardell Krieg’s work with these shapes has been super fun to play with:

Seemingly simple ideas about folding and bending can lead to pretty fantastic mathematical objects! These objects are another great reminder of how 3d printing can be used to make mathematical ideas accessible.

(8) Getting to some more advanced work from Erik Demaine and Joseph O’Rourke

As hinted at early with the Fold and Cut theorem, some of the mathematical ideas in folding can be extremely deep:

(9) Current research by Laura DeMarco and Kathryn Lindsey

Finally, the Quanta Magazine article linked below references current research involving folding ideas. The article also provides several ways to share the ideas with students.

The two blog posts below show my attempt to understand some of the ideas in the article and share them with kids. The video shows some of the shapes we made while studying the article.

So, these are just sort of ideas that popped into my head thinking about one part of a math explorations class. Feels like you could spend three weeks on folding and expose kids to lots of fun ideas that they’d (likely) never seen before.

For today’s project I wanted to have the boys focus on the approach that Nassim Taleb used to study the problem posed by Alexander Bogonolny. That approach was to chop the shape into slices to get some insight into the overall shape. Here’s Taleb’s tweet:

So, for today’s project we followed Taleb’s approach to study a 4d space similar to the space in the Bogomolny tweet above. The space is the region in 4d space bounded by:

,

,

, and

,

To start the project we reviewed the shapes from the project inspired by Kelsey Houston-Edwards’s hypercube video. After that we talked about the equations we’d looked at in the project inspired by Alexander Bogomolny’s tweet and the shape we encountered there:

Next we talked a bit about the equations that we’d be studying today and I asked the boys to take a guess at some of the shapes we’d be seeing. We also talked a little bit about absolute value which briefly caused a tiny bit of confusion.

The next part of the project used the computer. First we reviewed Nassim Taleb’s approach to studying the problem posed by Alexander Bogomolny. I think it is really useful for kids to see examples of how people use mathematical ideas to solve problems.

The 2d slicing was a fascinating way to approach the original 3d problem. We’ll use the same idea (though in 3d) to gain some insight on the 4d shape.

One fun thing about this part of the project is that we encountered a few shapes that we’ve never seen before!

Finally, I revealed 3d printed copies of the shapes for the boys to explore. They immediately noticed some similarities with the hypercube project. It was also really interesting to hear them talk about the differences.

At the end, the boys think that the 4d shape we encountered in this project will be the 4d version of the rhombic dodecahedron. We’ve studied that shape before in this project inspired by a Matt Parker video:

At the end of that project we were looking carefully at how you would find the volume of a rhombic dodecahedron in general. Today I wanted to move from the general case to the specific and see if we could calculate the volume of our shapes. This tasked proved to be much more difficult for the boys than I imagined it would be. Definitely a learning experience for me.

Here’s how we got going. Even at the end of the 5 min here the boys are struggling to see how to get started.

So, after the struggle in the first video, we tried to back up and ask a more general question -> how do we find the volume of a cube?

Now we grabbed a ruler and measured the side length of the cube. This task also had a few tricky parts -> do we include the zome balls, for example. But now we were making progress!

Finally we turned to finding the volume of one our our 3d printed rhombic dodecahedrons. We did some measuring and found how many of these shapes it would take to fill our zome shape and how many it would take to fill a 1 meter cube.

So, a harder project than I expected, but still fun. We’ve done so much abstract work over the years and that makes the concrete work a little more difficult (or unusual), I suppose. I’m happy for this struggle, though, since it showed me that we need to do a few more projects like this one.