Tag games

Using the Infinite Galaxy puzzle from Nervous System to talk topology with kids

The boys and I spent yesterday working on the new Infinite Galaxy Puzzle from Nervous System:

Having finished it, I thought a project talking about some of the math behind the puzzle would be really fun for the boys.

Since the front cover of the puzzle says that it was inspired by the Möbius strip, I started today’s project talking about that shape:

Next we talked about the puzzle and what geometric / topological properties it has. The interesting mathematical question here is whether or not the puzzle is a Möbius strip?

It turns out the puzzle is projective plane!!

We spent the last part of the project today talking about the projective plane and a few other similar shapes.

Even without any of the math, this new puzzle from Nervous System is a really fun challenge. The mathematical ideas behind the puzzle move it from the “fun puzzle” real to the “blow your mind” realm, though!

I’m so happy to have found one of these puzzles at the Nervous System open house last weekend. What an amazing way to share some introductory ideas from topology with kids!

Advertisements

The puzzles (and everything else!) from Nervous System will blow your mind

Yesterday Nervous System in Somerville, MA had an open house and I was lucky to have a few hours free while the boys were at their karate black belt tests. Visiting their shop was absolutely incredible:

Definitely check out their website and their twitter feeds. I follow Jessica Rosenkrantz – @nervous_jessica. Here’s the link to their website:

The Nervous System website

At the open house I bought two new puzzles. The boys had seen one previously at Christmas, too. For our project today I’d already wanted something on the easy to talk about / less heavy math side because of the black belt tests yesterday, so talking about the new puzzles was perfect.

We started with the geode puzzle – one of the fun things we talked about was how the boys thought the computer generated the geode shape:

After the introduction to the puzzles, we moved on to talking about the challenge of putting the puzzle together. Favorite line – “once you get started, it gets pretty hard.” Yep!

Next I showed them the latest creation from Nervous Systems – an “infinity puzzle” inspired by the Mobius strip!

I was incredibly lucky to be able to buy one of the infinity puzzles yesterday. So, for the last part of today’s project we did an unboxing:

If you know kids who like puzzles – or you like puzzles! – all I can say is the Nervous System puzzles are absolutely incredible.

3 hours after we finished the project this morning, my younger son had returned to the Geode puzzle:

Sharing a card shuffling idea from Jim Propp’s “Who knows two?” essay with kids

Jim Propp published a terrific essay last week:

Here’s a direct link in case the Twitter link has problems:

Who knows two? by Jim Propp

One of the topics covered in the essay is a special type of card shuffle called the Faro shuffle. We have done a few projects on card shuffling projects previously, so I thought the kids would be interested in learning about the Faro shuffle. Here are our prior card shuffling projects:

Card Shuffling and Shannon Entropy

Chard Shuffling and Shannon Entropy part 2

Revisiting card shuffling after seeing a talk by Persi Diaconis

I started the project by asking the kids what they knew about cards. They remembered some of the shuffling projects and then introducing the idea of the Faro shuffle.

My younger son thought he saw a connection with pi, which was a fun surprise.

We continued studying the Faro shuffle with 8 cards and looked for patterns in the card numbers and positions. The boys noticed some neat patterns and were able to predict when we’d return to the original order of cards!

Next we looked at the paths taken by individual cards. My older son thought that there might be a connection with modular arithmetic (!!!) and the boys were able to find the pattern. I’d hoped that finding the pattern here would be within their reach, so it was a really nice moment when he brought up modular arithmetic.

Finally, we wrapped up by talking about how to extend the ideas to a 52 card deck and calculated how many Faro shuffles we’d need to get back to where we started.

I think that kids will find the idea of the Faro shuffle to be fascinating. Simply exploring the number patterns is a really interesting project, and there’s lots of really interesting math connected to the idea. I’m really thankful that Jim Propp takes the time to produce these incredible essays each month. They are a fantastic (and accessible) way to explore lots of fun mathematical ideas.

A review of the game Pylos

Thanks to a tweet from Vincent Pantaloni last week I learned about the game Pylos:

This morning my younger son finished up his math work a little early so we decided to do a quick review of the game.

Here’s the game and my son’s thoughts about it after having played one game last night – I love that he sees that one of the math ideas involved in this game is sphere packing!

Next we demonstrated a game to show that the play itself is pretty easy for kids, yet filled with interesting strategy:

We wrapped up by discussing the game. I think my son’s comment that the game is surprisingly simple and fun is a great summary. Definitely a great game for kids.

A review of “The Sherlock”

We received a nice gift from Jim Propp earlier this month. With the kids off of school for a snow day today, it seemed like a good time to open it up.

My younger son played with it for a while and then I wanted to have him show how the game worked. Here are his initial thoughts about the game:

Here’s the first example of a puzzle solve. You’ll see that even having solved it once before it is still not necessarily so simple:

Here’s a second solve example – this one goes pretty quickly

Finally, we wrapped up by having him show some of the other pieces and me asking him to talk about what he thinks the main ideas are for this puzzle. Interestingly he doesn’t think that it is a math puzzle, but rather a logic puzzle 🙂

So, thanks to Jim Propp for giving us this really nice puzzle game.

Playing with “Satan’s Cube”

A few weeks ago I saw this tweet from the Joint Math Meetings:

I had to have it!

The stickers came today:

So, we found an old cube and replaced the old stickers with the new ones – here’s the final product:

If you’d like to order some for yourself, here’s the video from the folks who designed the product:

Revisiting non-transitive dice

We’ve done a few projects on non-transitive dice in the past:

Sharing Tim Gower’s non-transitive dice talk with kids

Non-Transitive Grime Dice

Today we’ve got some snow to shovel, so I was looking for a fairly light project this morning so we could get out the door to shovel. I grabbed our Grime dice off of the shelf and asked the kids to talk about them:

I asked the boys to pick two pairs of dice and test them to see which color would win. They worked independently and here’s how they explained what they found:

Finally, for a bit of a challenge, I had them work together to put the dice in a circular arrangement so that every color beat the one coming after it and lost to the one before it. This arrangement illustrates the seemingly odd non-transtive nature of these dice:

Although short, this was a fun exercise. These “Grime” dice are really fun for kids to play with!

Sharing Tim Gowers’s nontransitive dice talk with kids

During the week I attending a neat talk at Harvard given by Tim Gowers. The talk was about a intransitive dice. Not all of the details in the talk are accessible to kids, but many of the ideas are. After the talk I wrote down some ideas to share and sort of a sketch of a project:

Thinking about how to share Tim Gowers’s talk on intransitive dice with kids

One of the Gowers’s blog posts about intransitive dice is here if you want to see some of the original discussion of the problem:

One of Tim Gowers’s blog posts on intransitive dice

We started the project today by reviewing some basic ideas about intransitive dice. After that I explaine some of the conditions that Gowers imposed on the dice to make the ideas about intransitive dice a little easier to study:

The next thing we talked about was 4-sided dice. There are five 4-sided dice meeting Gowers’s criteria. I thought that a good initial project for kids would be finding these 5 dice.

Now that we had the five 4-sided dice, I had the kids choose some of the dice and see which one would win against the other one. This was an accessible exercise, too. Slightly unluckily they chose dice that tied each other, but it was still good to go through the task.

Now we moved to the computer. I wrote some simple code to study 4-sided through 9-sided dice. Here we looked at the 4-sided dice. Although it took a moment for the kids to understand the output of the code, once they did they began to notice a few patterns and had some new ideas about what was going on.

Having understood more what was going on with 4-sided dice, we moved on to looking at 6-sided dice. Here we began to see that it is actually pretty hard to guess ahead of time which dice are going to perform well.

Finally we looked at the output of the program for the 9-sided dice. It is pretty neat to see the distribution of outcomes.

There are definitely ideas about nontransitive dice that are accessible to kids. I would love to spend more time thinking through some of the ideas here and find more ways for kids to explore them.

Thinking about how to share Tim Gowers’s talk on intransitive dice with kids

Yesterday Tim Gowers gave a really nice talk at Harvard about intransitive dice. The talk  was both interesting to math faculty and also accessible to undergraduates (and also to math enthusiasts like me).

The subject of the talk – properties of intransitive dice – was based on a problem discussed on Gowers’s blog earlier in 2017.  Here’s one of the blog posts:

One of Tim Gowers’s blog posts on intransitive dice

Part of the reason that I wanted to attend the talk is that we have played with non-transitive dice previously and the kids seemed to have a lot of fun:

Non-Transitive Grime Dice

Here’s the punch line from that project:

The starting example in Gowers’s talk was due to Bradley Efron. Consider the four 6-sided dice with numbers:

A: 0,0,4,4,4,4
B: 3,3,3,3,3,3
C: 2,2,2,2,6,6
D: 1,1,1,5,5,5

If you have little dice rolling competition in which the winner of each turn is the die with the highest number, you’ll run across the following somewhat surprising expected outcome:

A beats B, B beats C, C beats D, and D beats A.

The question that interested Gowers was essentially this -> Is the situation above unusual, or is it reasonably easy to create intransitive dice?

Although the answering this question probably doesn’t create any groundbreaking math, it does involve some fairly heavy lifting, and I think the details in the talk are not accessible (or interesting) to kids.  Still, though, the general topic I think does have questions that could be both fun and interesting for kids to explore.

In discussing a few of the ideas that I think might be interesting to kids, I’ll use a constraints that Gowers imposed on the dice he was studying. Those are:

(i) The numbers on each side of an n-sided can be any integer from 1 to n

(ii) The sum of the numbers must be (n)(n+1)/2

I’ll focus just on 6-sided dice for now. One question that kids might find interesting is simply how many different 6-sided dice are there that meet these two criteria above? Assuming I’ve done my own math right, the answer is that there are 32 of them:

dice1

Next, it might be interesting for kids to play around with these dice and see which ones have lots of wins or lots of losses or lots of draws against the other 31 dice.  Here’s the win / draw / loss totals (in the same order as the dice are listed above):

competition

So, for clarity, the 4th die on the list – the one with numbers 1,1,3,5,5,6  – wins against 16 other dice, draws with 7 (including itself), and loses to 9.  Not bad!

The die three down from that – the one with numbers 1, 2, 2, 4, 6, 6 – has the opposite results.  Such poor form 😦

It certainly wasn’t obvious to me prior to running the competition that one of these two dies would be so much better than the other one.  Perhaps it would be interesting for kids to try to guess ahead of time which dice will be great performers and which will perform poorly.

Also, what about that one that draws against all the others – I bet kids would enjoy figuring out what’s going on there.

Once I had the list, it wasn’t too hard for me to find a set of three intransitive dice.  Choosing

A ->  2, 2, 3, 3, 5, 6

B -> 1, 1, 3, 5, 5, 6, and

C -> 1, 2, 4, 4, 4, 6

You’ll see that A beats B on average, B beats C, and C beats A.

It is always fun to find problems that are interesting to professional mathematicians and that are also accessible to kids.   A few ideas I’ve found from other mathematicians can be found in these blog posts:

Amazing math from mathematicans to share with kids

10 more math ideas from mathematicians to share with kids

I think exploring intransitive dice will allow kids to play with several fun and fascinating mathematical ideas.   I’m going to try a project (a computer assisted project, to be clear) with the kids this weekend to see how it goes.

 

Exploring Elchanan Mossel’s fantastic probability problem with kids

Saw a really great problem via a Lior Patcher tweet:

Here’s the problem:

You throw a dice until you get 6. What is the expected number of throws (including the throw giving 6) conditioned on the event that
all throws gave even numbers.

Here are direct links to Kalai’s two blog posts on the problem:

Gil Kalai’s “TYI 30: Expected number of dice rolls

Gil Kalai’s follow up post: Elchanan Mossel’s Amazing Dice Paradox (Your Answers to TYI 30)

It is fun to click through to the first Kalai blog post linked above to cast your vote for the answer if you haven’t seen the problem before.

We actually started the project today by doing that:

Next we rolled some 6-sided dice to see how this game worked. I note seeing the video that a few of the rolls went off camera, sorry about that 🙂

At the end we discussed what we saw and why what we found was a little surprising.

The next part of the project was having the boys play the game off camera until they found 5 rolls meeting the criteria.

After this exercise the boys started to gain some confidence that the answer to the problem was 3/2.

Now I walked them through what I think is the easiest solution to understand. It comes from a comment on the first Gil Kalai’s blog post linked above:

ProbabilityComment

Listening to this discussion now, I wish I would have done a better job explaining this particular solution. Still, I hope the discussion is instructive.

Finally, we went to Mathematica to evaluation the sum from the last video and then to explore the problem via a short program I wrote.

At the end of this video the boys some up their thoughts on the problem.

I love this problem. It isn’t that often I run across a clever problem that is interesting for both professional mathematicians and kids. Those problems are absolute