A fun discussion about prime numbers with kids inspired by an Evelyn Lamb joke!

Yesterday I saw this tweet from Evelyn Lamb:

It inspired me to do a project on prime numbers with the boys. So, I grabbed my copy of Martin Weissman’s An Illustrated Theory of Numbers and looked for a few ideas:

We began by talking about why there are an infinite number of primes:

Next we moved on to taking about arithmetic sequences of prime numbers. There are a lot of neat results about these sequences, though as far as I can tell, they have proofs way beyond what kids could grasp. So instead of trying to go through proofs, we just played around and tried to find some sequences.

I also asked the boys how we could write a computer program to find more and they had some nice ideas:

Next we played with the computer programs. Sorry that this video ran a bit long. As a challenge for kids – why couldn’t we find any 4 term sequences with a difference of 16?

Finally, we looked at Evelyn Lamb’s joke to see if we could understand it!

It is definitely fun to be able to share some elementary ideas in number theory with kids!

Advertisements

Exploring Wilson’s theorem with kids inspired by Martin Weissman’s An Illustrated Theory of Numbers

I love Martin Weissman’s An Illustrated Theory of Numbers:

Flipping through it last night I ran into an easy to state theorem that seemed like something the boys would enjoy exploring:

Wilson’s Theorem -> If p is a prime number, then

(p-1)! \equiv -1 \mod p.

The proof is a bit advanced for the kids, but I thought it would still be fun to play around with the ideas. There is an absolutely delightful proof involving Fermat’s Little Theorem on the Wikipedia page about Wilson’s Theorem if you are familiar with polynomials and modular arithmetic:

The Wikipedia page for Wilson’s Theorem

Here’s how I introduced the theorem. We work through a few examples and the boys have some nice initial thoughts. One happy breakthrough that the boys made here is that they were able to see two ideas:

(i) For a prime p, (p-1)! is never a multiple of p, and

(ii) There were ways to pair the numbers in (p-1)! (at least in simple cases) to see that the product was -1 \mod p

Next we tried to extend the pairing idea the boys had found in the first part of the project. Extending that idea was initially pretty difficult for my younger son, but by the end of this video we’d found how to do it for the 7! case:

Now we moved on to study 11! and 13! At this point the boys were beginning to be able to find the pairings fairly quickly.

To wrap up this morning, I asked the boys for ideas on why we always seemed to be able to pair the numbers in a way that made Wilson’s theorem work. They had some really nice ideas:

(i) For odd primes, we always have an even number of integers – so pairing is possible,

(ii) We always have a product 1 * (p-1) which gives us a -1.

Then we chatted a bit more about why you could always find the other pairs to produce products that were 1. The main focus of our conversation here was why it wouldn’t work for non-primes:

Definitely a fun project! There’s some great arithmetic practice for the boys and also a many opportunities to explore and experience fun introductory ideas about number theory.

Introducing the basic ideas behind quadratic reciprocity to kids

We are heading out for a little vacation before school starts and I wanted a gentle topic for today’s project. When I woke up this morning the idea of introducing the boys to quadratic reciprocity jumped into my head. The Wikipedia page on the topic gave me a few ideas:

Wikipedia’s page on quadratic reciprocity

I started the project by showing them the chart on Wikipedia’s page showing the factorization of n^2 - 5 for integers 1, 2, 3, and etc . . .

What patterns, if any, would they see?

Next we moved to a second table from Wikipedia’s page – this table shows the squares mod p for primes going going from 3 to 47.

Again, what patterns, if any, do they notice?

Now I had them look for a special number -> for which primes p could we find a square congruent to -1 mod p?

Finally, we wrote short program in Mathematica to test the conjecture that we had in the last video.  The conjecture was that primes congruent to 3 mod 4 would have no squares congruent to -1 mod p, and for primes congruent to 1 mod 4 would, -1 would  always be a square.

Sorry for the less than stellar camera work in this video . . . .

Trying out Edmund Harriss’s puzzle with kids

Saw a neat puzzle posted by Edmund Harriss last night:

I thought it would be fun to try it out with the boys this afternoon.

I didn’t give them much direction after introducing the puzzle – just enough to make sure that my younger son understood the situation:

After the first 5 minutes they had the main idea needed to solve the puzzle. In this video they got to the solution and were able to explain why their solution worked:

Definitely a fun challenge problem to share with kids. You really just have to be sure that they understand the set up and they can go all the way from there.

Walking through the proof that e is irrational with a kid

My son is finishing up a chapter on exponentials and logs in the book he was working through this summer. The book had a big focus on e in this chapter, so I thought it would be fun to show him the proof that e is irrational.

I started by introducing the problem and then with a proof by contradiction example that he already knows -> the square root of 2 is irrational:

Now we started down the path of proving that e is irrational.  We again assumed that it was rational and then looked to find a contradiction.

The general idea in the proof is to find an expression that is an integer if e is irrational, but can’t be an integer due to the definition of e.

In this part we find the expression that is forced to be an integer if e is irrational.

Now we looked at the same expression that we studied in the previous video and showed that it cannot be an integer.

I think my favorite part of this video is my son not remembering the formula for the sum of an infinite geometric series, but then saying that he thinks he can derive it.

This is a really challenging proof for a kid, I think, but I’m glad that my son was able to struggle through it. After we finished I showed him that some rational expressions approximating e did indeed satisfy the inequality that we derived in the proof.

Revisiting the last digits of Graham’s number

Several years ago we did a bunch of projects on Graham’s number.

An attempt to explain Graham’s number to kids, and

The last 4 digits of Graham’s number

These projects were inspired by this fantastic Evelyn Lamb article:

Graham’s numbers is too big for me to tell you how bit it is

Today I thought it would be fun to revisit the calculation of a few of the last digits of Graham’s number.

So, with no review, I asked my older son what he remembered about Graham’s number and then we talked about the surprising fact that you could calculate the last few digits even though you really couldn’t say much else about the number:

Next I asked my son about how he would approach calculating the last digit. He gravitated to the right idea -> modular arithmetic. The ideas were a little confusing to him, but I let him work mostly on his own.

We didn’t get to the end in this video, but you can see how the ideas start coming together.

In the last video he had made some progress on finding the last digit, but one piece of the argument kept giving him trouble.

BUT, he did have a correct argument – it just took him a minute to realize that he was on the right track.

Again, this is a nice example of how a kid works through some advanced mathematical ideas.

Next we went to the computer to begin looking at the last two digits of Graham’s number. The last two digits of powers of 3 repeat every 20 powers, so it was easier to use Mathematica to find the cycle than it was to do it by hand.

Here I just explain the short little computer program I wrote to him.

Finally, we tried to see if we could use the idea that the powers of 3 repeat their last two digits every 20 steps to see if we could find the last 2 digits of Graham’s number.

As we started down the path here, I didn’t know if we’d find those last two digits. But we did! It was a nice way to end the project.

The square problem from the Julia Robinson math festival part 2

Yesterday we did a fun project on a problem I learned from Michael Pershan

That project is here:

Sharing a problem from the Julia Robinson math festival with the boys

Last night I got an interesting comment on twitter in response to my Younger son suggesting that we write the numbers in a circle – a suggestion that we didn’t pursue:

So, today we revisited the problem and wrote the numbers in a circle:

Next I asked them to try to find another set of numbers that would lead us to be able to pair all of the numbers together with the sum of each pair being a square. The discussion here was fascinating and they eventually found

This problem definitely made for a fun weekend. Thanks to Michael Pershan for sharing the problem originally and to Rod Bogart for encouraging us to look at the problem again using my younger son’s idea.