A fun creation with our facets

My older son is working on a different math project this morning, so once again my younger son was working along. While cleaning up a little bit yesterday we found our old collection of “facets” – so I asked my son to build something for the Family Math project today.

He built a really neat shape:

We have done two previous projects with the facets (including making a big circle 🙂

Our Facets have arrived!

Our second facets project!

They are definitely fun to play around with!

Advertisements

Playing with Archimedean solids

For today’s math project we are doing a 2nd project from George Hart and Henri Picciotto’s Zome Geometry:

 img_0726

I asked the boys to pick three shapes from the section on Archimedean solids. Here’s what they picked:

Shape 1: A Truncated Icosahedron

You start with a triple length icosahedron:

They you truncate it:

Shape 2: A truncated dodecahedron

Start with a dodecahedron with sides made from two short blue struts and 1 medium blue strut:

Now truncate it:

Shape 3:

Truncated Octahedron;

Start with an octahedron with side lengths equal to 3 long green struts.

Now truncate:

Two projects from Zome Geometry

For today’s math project I asked the boys to pick a project from George Hart and Henri Picciotto’s Zome Geometry:

 img_0726

My younger son picked a project about “Rhombic Zonohedra” which led to a terrific discussion about quadrilaterals and 3d geometry:

Ny older son picked a project on stellations of a dodecahedron. He was a little confused by the directions, but sorting out the confusion led to a great discussion.

I wish every kid everywhere could have the chance to play around with a zometool set.

Revisiting folding a dodecahedron into a cube

Folding a dodecahedron into a cube has been one of my favorite projects to do with the boys. Our first few projects about a “dodecahedron folding into a cube” are here:

dodecahedron fold

A neat post from Simon Gregg showing that a dodecahedron can fold into a cube

Can you believe that a dodecahderon folds into a cube?

(see the link above for the source of the amazing GIF on the right of the screen!)

Some 3D Geometry for Pamela Rawson

Today I had the boys work through the whole project on their own – just stopping every now and then to check in and hear about the progress.

Here are their initial thoughts after building the dodecahedron:

In the second part of the project the boys constructed one of the cubes that can be inscribed in a dodecahedron:

For the 3rd part of the project they “folded” the dodecahedron into a cube

Finally, the boys connected up the zome balls inside the cube and found an icosahedron.

Folding up the dodecahedron into a cube is one of my all time favorite math projects.  It is such a surprise that the two shapes can be connected in this way, and it is really fun to explore this connection with our zometool set!

 

My talk at the 2018 Williams College math camp

[had to write this in a hurry before the family headed off for a vacation – sorry that this post is likely a little sloppy]

Yesterday I gave a talk at a math camp for high school students at Williams College. The camp is run by Williams College math professor Allison Pacelli and has about 20 student.

The topic for my talk was the hypercube. In the 90 min talk, I hoped to share some amazing ideas I learned from Kelsey Houston-Edwards and Federico Ardila and then just see where things went.

A short list of background material for the talk (in roughly the order in the talk is):

(1) A discussion of how to count vertices, edges, faces, and etc in cubes of various dimensions

This is a project I did with my kids a few years ago, and I think helps break the ice a little bit for students who are (rightfully!) confused about what the 4th dimension might even mean:

Counting geometric properties in 4 and 6 dimensionsf

(2) With that introduction I had the students build regular cubes out of the Zometool set I brought. Then I gave them some yellow struts and asked them to construct what they thought a hypercube might look like. From the prior discussion they knew how many points and lines to expect.

To my super happy surprise, the students built two different representations. I had my boys talk about the two different representations this morning. Funny enough, they had difference preferences for which was the “best” representation:

Here’s what my older son had to say:

Here’s what my younger son had to say:

At the end of this section of my talk I showed the students “Hypercube B” from Bathsheba Grossman (as well as my Zometool version):

(3) Now we moved on to looking at cubes in a different way -> standing on a corner rather than laying flat

I learned about this amazing way to view a cube from this amazing video from Kelsey Houston-Edwards. One of the many bits of incredible math in this video is the connection between Pascal’s triangle and cubes.

Here are the two projects I did with my kids a after seeing Houston-Edwards’s video:

Kelsey Houston-Edwards’s hypercube video is incredible

One more look at the hypercube

After challenging the kids to think about what the “slices” of the 3- and 4-dimensional cubes standing on their corners would be, I showed them the 3D printed versions I prepared for the talk:

Here are the 2d slices of the 3d cube:

Here are the 3d slices of the 4d cube:

(4) Finally, we looked at the connection between cubes and combinatorics

I learned about this connection from this amazing video from Numberphile and Federico Ardila:

Here is the project I did with my older son after seeing Ardila’s video:

Federico Ardila’s Combinatorics and Higher Dimensions video is incredible!

I walked the students through how the vertices of a square correspond to the subsets of a 2-element set and then asked them to show how the vertices of a cube correspond to the subsets of a 3-element set.

There were a lot of oohs and ahhs as the students saw the elements of Pascal’s triangle emerge again.

Then I asked the students to find the correspondence between the 4-d cubes they’d made and subsets of a 4-elements set. I was incredibly happy to hear three different explanations from the students about how this correspondence worked – I actually wish these explanations were on video because I think Ardila would have absolutely loved to hear them.

(5) One last note

If you find all these properties of 4-D cubes as neat as I do, Jim Propp has a fantastic essay about 4 dimensional cubes:

Jim Propp’s essay Time and Tesseracts

By lucky coincidence, this essay was published as I was trying to think about how to structure my talk and was the final little push I needed to put all the ideas together.

Part 2 sharing Mathologer’s “triangle squares” video with kids

Yesterday we did a project inspired by Mathologer’s “triangle squares” video:

Here’s the project:

Using Mathologer’s triangular squares video with kids

Today we took a closer look at one of the proofs in the Mathologer’s video -> the infinite descent proof using pentagons that \sqrt{5} is irrational:

Here are some thoughts from the boys on the figure and the proof. You can see from their comments that they understand some of the ideas, but not quite all of them.

Watching Mathologer’s video, I thought that the triangle proof about the irrationality of \sqrt{3} and the proof of the irrationality of \sqrt{2} using squares were something kids could grasp, but thought that the pentagon proof presented here was a bit more subtle. We may have to explore this one more carefully over the summer.

After discussing the proof a bit, I switched to something that I hoped was easier to understand. Here we talk about the different pairs of numbers that create fractions close to \sqrt{5}.

The boys were able to explain how to manipulate the pentagon diagram to produce the fraction 38/17 from the fraction 9/4 that we started with. From there the were able to also show that 161/72 was also a good approximation to \sqrt{5}:

Next we went to the computer to explore the numbers, and also to see how the same numbers appear in the continued fraction for \sqrt{5}.

In the last video we tried to do some of the continued fraction approximations in our head, but that wasn’t such a great idea. Here we finished the project by computing some of the fractions we found in the last video by hand.

I love Mathologer’s videos. It is amazing how many ways there are to use his videos with kids. Can’t wait to explore these “triangular squares” a bit more!

Comparing a tetrahedron and a pyramid with theory and experiment

We’ve done a few projects on pyramids and tetrahedrons recently thanks to ideas from Alexander Bogomolny and Patrick Honner. Those projects are collected here:

Studying Tetrahedrons and Pyrmaids

One bit that remained open from the prior projects was sort of a visual curiosity. When you hold the zome Tetrahedron and zome Pyramid in your hand, it doesn’t look at all like the pyramid has twice the volume. Today’s project was an attempt to dive in a bit more into this puzzle.

We started by reviewing the ideas that Alexander Bogomolny and Patrick Honner shared:

Next we reviewed the geometric ideas that lead you to the fact that the volume of the square pyramid is double the volume of the tetrahedron.

Now we moved to the experiment phase – we put packing tape around the tetrahedron and the pyramid and filled them with water (as best we could). We then dumped that water into a bowl and used a scale to measure the amount of water. Our initial experiment led us to conclude that there was roughly 1.8 times as much water in the pyramid.

After that we repeated each of the measurements to get a total of 5 measurements of the volume of water in each of the shapes. Here are the results:

Definitely a fun project. I wish that we’d have gotten measurements that were closer to the correct volume relationship, but it is always nice to see that experiments don’t always match the theory!