Tag zometool

Exploring induction and the pentagonal numbers

Yesterday we did a fun project based on this tweet by James Tanton:

That project is here:

Exploring a neat problem from James Tanton

During the project yesterday we touched on mathematical induction and also on the pengatonal numbers. Today I wanted to revisit those ideas with slightly more depth.

We started with a quick review of yesterday’s project:

Now we looked at a mathematical induction proof. The example here is:

1 + 3 + 5 + \ldots + (2n - 1) = n^2

(the nearly camera ran out of batteries, that’s why this part is split into two videos)

Here’s the 2nd part of the induction proof after solving the battery problem:

To wrap up the project we went to the living room to build some shapes with our Zometool set. The Zome shapes really helped the boys make the connection between the numbers and geometry.

The boys really liked this project. In fact, my younger son spent the 30 min after we finished making the decagonal numbers 🙂

Looking at Dave Richeson’s “Euler’s Gem” book with kids

I stumbled on this book at Barnes & Noble last week:

It is such a delightful read that I thought the kids might enjoy it, too, so I had them read the introduction (~10 pages).

Here’s what they learned:

Next we tried to calculate Euler’s formula for two simple shapes – a tetrahedron and a cube:

After that introduction we moved on to some slightly more complicated shapes – an icosahedron and a rhombic dodecahedron. The rhombic dodecahedron gave the kids a tiny bit of trouble since it doesn’t have quite the same set of symmetries as any of the Platonic solids:

Now we tried two very difficult shapes:

Shapes

We studied these shapes last week in a couple of projects inspired by an Alexander Bogomolny tweet:

Working through an Alexander Bogomolny probability problem with kids

Connecting yesterday’s probability project with a few old 3d geometry projects

I suspected that this part would be difficult, so I had them count the faces, edges, and verticies of the two shapes off camera. Here’s what they found:

So, since the boys couldn’t agree on the number of verticies, edges, and faces of one of the shapes, I had them build it using our Zometool set to see what was going on. The Zometool set helped, thankfully. Here’s what they found after building the shape (and we got a little help from one of our cats):

Definitely a fun project. It was especially cool to hear the kids realize that the shape they were having difficulty with was (somehow) a torus. Or, as my older son said: “In the torus class of shapes.” I’m excited to try to turn a few other ideas from Richeson’s book into projects for kids.

Working through an Alexander Bogomolny probability problem with kids

Earlier in the week I saw Alexander Bogomolny post a neat probability problem:

There are many ways to solve this problem, but when I saw the 3d shapes associated with it I thought it would make for a fun geometry problem with the boys. So, I printed the shapes overnight and we used them to work through the problem this morning.

Here’s the introduction to the problem. This step was important to make sure that the kids understood what the problem was asking. Although the problem is accessible to kids (I think) once they see the shapes, the language of the problem is harder for them to understand. But, with a bit of guidance that difficulty can be overcome:

With the introduction out of the way we dove into thinking about the shape. Before showing the two 3d prints, I asked them what they thought the shape would look like. It was challenging for them to describe (not surprisingly).

They had some interesting comments when they saw the shape, including that the shape reminded them of a version of a 4d cube!

Next we took a little time off camera to build the two shapes out of our Zometool set. Building the shapes was an interesting challenge for the kids since it wasn’t obvious to them what the diagonal line segments should be. With a little trial and error they found that the diagonal line segments were yellow struts.

Here’s their description of the build and what they learned. After building the shapes they decided that calculating the volume of the compliment would likely be easier.

Sorry that this video is a little fuzzy.

Having decided to look at the compliment to find the volume, we took a look at one of the pieces of the compliment on Mathematica to be sure that we understood the shape. They were able to see pretty quickly that the shape had some interesting structure. We used that structure in the next video to finish off the problem:

Finally, we worked through the calculation to find that the volume of the compliment was 7/27 units. Thus, the volume of the original shape is 20 / 27.

As I watched the videos again this morning I realized that my older son mentioned a second way to find the volume of the compliment and I misunderstood what he was saying. We’ll revisit this project tomorrow to find the volume the way he suggested.

I really enjoyed this project. It is fun to take challenging problems and find ways to make them accessible to kids. Also, geometric probability is an incredibly fun topic all by itself!

A project inspired by Steve Phelps’s Dissection tweet

I saw a neat tweet from Steve Phelps today:

We’ve done a couple of projects on the Rhoombic Dodecahedron before – here are three of them:

Using Matt Parker’s Platonic Solid video with kids

A 3D Geometry proof with few words courtesy of Fawn Nguyen

Penrose Tiles and some simple 3D Variations

After seeing Phelps’s tweet I thought it would be fun to see if the boys remembered how to find the volume of the shape. So, I built one out of our Zometool set and asked them what they knew about the shape.

Here’s what my older son had to say:

Here’s what my younger son had to say:

I’m glad I saw Phelps’s tweet – it was fun to revisit some of these old projects occasionally. Also, it was a nice reminder of how easy it is to share 3d shapes with kids using a Zometool set.

A surprise 30-60-90 triangle

Over the last couple of days we’ve done two projects that started from a couple of easy to state questions:

(i) Given some squares with area 1, how do you make a square with area 2?

(ii) Given some squares with area 1, how do you make a square with are 3?

Those project are here:

A neat and easy to state geometry problem

Some simple proofs of the Pythagorean Theorem

Tonight my older son is at a school event. That gave me time to do a fun little extension of these two projects with my younger son.

First I reviewed the original problems:

My son solved the 2nd problem above by making triangles with sides 1, \sqrt{2}, and \sqrt{3}. For this part of the project I wanted to show him a different triangle that has a side length of \sqrt{3} – a 30-60-90 triangle:

Now – for a little extra fun – we made a Zometool cube. That cube shows that the face diagonal (of a 1x1x1) cube has length \sqrt{2}. It also shows that the internal diagonal has length \sqrt{3}.

Here’s the surprise – if we extend basically the same geometry to 4 dimensions, we find that the “long” internal diagonal of a 1x1x1x1 cube has length 2, and that there’s a secret little 30-60-90 triangle hiding in the cube!

We did a similar project a few years ago:

Did you know that there is a 30-60-90 triangle in a Hypercube

It was nice to revisit this idea today 🙂

Extending Vsauce’s 4 dimensional shadow tweet a bit

Saw a fun tweet from Vsauce before we left for vacation:

He later shared the shape, too:

Using shadows is a an incredibly fun way to explore complex shapes. Henry Segerman gave an amazing talk about the idea last fall at MIT:

segerman

I think playing with these sorts of shadows is a great way to share complex shapes with kids, too (we also used a Zometool set!):

Playing with shadows inspired by Henry Segerman

4-dimensional Shadows

Playing with our Zometool model of Bathsheba Grossman’s “Hypercube B” was especially cool – you can see some of the same effects as in the Vsauce video, though I think the two shapes are a little different.

Though this project shows that there are a few different Zome versions of the shape, so maybe my blue-strut version isn’t all that different from Vsauce’s 4-d cube after all:

Bathsheba Grossman’s “Hypercube-B” part 2

Anyway, as Vsauce’s tweet shows, exploring shapes via shadows is fascinating. It is also a really fun way to introduce kids to shapes that they’ve probably never seen before!

A Zometool follow up to our cuboctohedron project

Earlier in the week we studied the cuboctahedron:

cubeoctahedron

That project is here:

Playing wiht the Cuboctahedron

Also earlier in the week I saw these shapes displayed in the MIT math department:

The chance encounters with these shapes this week gave me the idea to revisit them today and see if we could build them with our zometool set. The second shape, I think, is mislabled in the MIT display case – or maybe they are just using a less common name. The usual name is the icosidodecahedron, and it is also a shape we’ve seen before:

 Snowman

I started the project today by showing the shapes to the boys and asking what they knew about them:

Then we went to the living room to build the shapes. The only tricky part is that the cuboctahedron needs green struts. As always, the wonderful thing about the Zometool set is that you can go from seeing these shapes on a page to holding them in your hand almost immediately!

The last part of the project was building the dual shape of the cuboctahedron. I wasn’t sure if the zome set would let us do this since you can’t exactly find the center of the triangles with zome – but we did catch a lucky break! The dual is also a shape we’ve seen before 🙂

This project was really fun – exploring geometry with our Zometool set is one of my favorite activities!

Taking about Kate Nowak’s shape

Saw this neat drawing from Kate Nowak the other night:

I was interested to see if we could make the shape from our Zometool set, and . . . .

The boys really enjoyed making the shape last night and both also made several comments about how interesting it was. This morning we talked about it a bit. Both kids focused on symmetry. I spent a bit more time with my older son exploring the different kinds of symmetry, but it was great to hear what both kids had to say. It really is an amazing shape!

Younger son first:

Older son next:

This was a really fun project. The shape didn’t take that long to build, which was lucky. It is always fun to be able to pull out the Zome set to explore something that we saw on Twitter 🙂

Using 3d printing to talk symmetry with kids

We’ve done a lot of projects relating to platonic solids and dodecahedrons in particular. A really neat fact about dodecahedrons is that you can use the verticies to put 5 cubes inside!

It isn’t just a mathematical “fun fact” either – the symmetry groups involved play roles in important mathematical theorems.

For today’s project I wanted to explore one cube in a dodecahedron and look at the relationship between the rotations of the cube and the rotations of the dodecahedron.

We started by looking at the dodecahedron by itself:

Next we moved to looking at the cube in the dodecahedron and studied what rotating the dodecahedron did to the cube:

Finally we looked at some 3d printed models that we made to see if these models helped us explore the rotations a bit more:

I was a little disappointed that I made the 3d printed models a bit too small, but I still like how this project went. I’m going to try again with some slightly larger models with my older son.

A project inspired by an AMC 12 octagon problem

The problem pictured below from the 2003 AMC 12 gave my son some trouble:

Screen Shot 2016-12-26 at 9.58.08 AM.png

We talked through it together a few days ago, but I thought it would be fun to try to do an octagon-inspired math project today.

We started with the problem and then talked a bit about a 3d print we found on Thingiverse:

Next we took a look at a version of the 3d printed shape that we made from our Zometool set. You can’t make a regular octagon with a Zometool set, and the fact that our shape didn’t have a regular octagon led to a good discussion:

For the last part of the project we tried to find the volume of our truncated cube.