Tag algebra

Talking inverse functions with my older son

My older son was stuck on a question about inverse functions from his Precalculus book:

Let f(x) = \frac{cx}{2x + 3}

Assume that f(f(x)) = x for all x \neq -3/2. Solve for c.

We began by talking about what was giving him difficulty and then moved on to solving the problem.

Next we moved on to looking at the function on Mathematica. It was a little unlucky that the scale was different for the x- and y-axes, but I think the pictures still got the point across.

After we finished talking I posted about the problem on twitter and John Golden made a neat Desmos version of the problem:

Advertisements

Starting AoPS’s Precalculus book this year

Since we stopped home schooling about 2 years ago I’ve mostly been doing projects with my kids rather than covering new content. This year I wanted to get back into content and have decided to do a slow walk through Art of Problem Solving’s Precalculus book with my older son.

Today this problem gave him a little trouble:

Find the domain and range of f(x) = 1 / (1 + \frac{1}{x})

We talked about the problem when he got home from school tonight. Here’s what he thought about the domain:

Next we talked about the range which is a more complicated problem (at least I think so anyway):

So, I’m happy that he was able walk through this explanation after school today. WE spent a while talking about it this morning and I was hoping that the ideas wouldn’t slip out of his mind during the day.

A mistake that led to a great conversation

My older son had a homework problem that asked him to find the area of the region bounded by the two equations:

(i) | 2x + 3y | \leq 6, and

(ii) | x - 2y | \leq 4

Mathematica’s picture of that shape is here:

Equation1

He told me that he used Pick’s theorem and found that the area of the shape was 13 square units.

There’s just one small problem – you can’t use Pick’s theorem to find the area of this shape since the corners of the shape are not lattice points of the grid.

What to do . . . .

I wrote a quick little program that picked 100 million random points in the 10×10 square centered at (0,0) and tested whether or not they were part of the shape. That program found that 13.71% of the points were part of the shape – that was enough to convince him that the area might be larger than 13 square units.

Next I had him re-read Pick’s theorem to see what went wrong. He saw pretty quickly that the shape didn’t meet the condition of having the corners lie on lattice points.

I really wanted to try to find a way to make Pick’s theorem work with this shape.  I had him determine the y-coordinate for the far right corner.  The value was y = -2/7.

After finding that value, we had a good talk about scaling.  To make the new grid larger we had to *divide* the x and y coordinates in the equations by 7.  Here’s Mathematica’s picture of the new shape and grid (note that the x and y values run from -25 to 25 in this picture):

GridPick.jpg

With this shape we are able to use Pick’s theorem to calculate the area.   We counted 40 grid points on the boundary without too much difficulty.   Counting the ones in the middle was a little bit more of a pain, so we wrote a short program to perform that calculation for us.  Note that we have to change the “less than or equal to” from the original equations to “strictly less than” since we want to be inside the shape:

LatticeCounting
So, we have 653 lattice points in the inside and 40 on the boundary.  Pick’s theorem tells us that the area is equal to the number of lattice points on the interior plus half the number of lattice points in the boundary minus 1.  That’s 672 units.    In the picture above, 1 unit is equal to 1/49 of a unit in the original picture, so the original area is 96 / 7 or 13 5/7.   Close to what he found originally, but not equal!

Along the way we also talked about alternate ways to find the area – the easiest being dividing the shape into two triangles with a vertical line through the middle.

I’m really excited about the discussion that we had tonight.  Funny how many important ideas in math can come up from a problem about absolute value and inequalities.

 

 

 

Lessons from a great geometry homework problem

My older son had a terrific homework problem in his enrichment math class. I wanted to walk through the problem again today so that my younger son could see it and also to highlight some of the lessons in the problem.

To start the project we revisted a fun geometry problem that will make a surprise appearance at the end of the homework problem:

Next I introduced the homework problem. My older son is familiar with this problem, but my younger son is seeing it for the first time. In this video my older son highlights the main ideas that we need to solve the problem (well . . . see the next video for the one we forgot!):

Here’s the one extra piece that we missed from the last video:

Next with the triangles labelled properly, we worked to see how we can use the Pythagorean theorem to help solve for the values of the two unknowns. I used this section of today’s project to give my younger son a little algebra practice:

Now comes the task of simplifying the two complicated equations. Hopefully that will help us make some progress towards solving them.

After the simplifying in the last video we are now ready to take a crack at solving for the radius of the smaller circles. Solving the equation involves solving a quadratic and that gave us a chance to talk about factoring.

Finally, we went back to the picture from the homework problem. We hadn’t solved for x in the project, but now we can use the pictures to help us find x’s value. We see an 8-15-17 triangle and also a 3-4-5 triangle. We also see the 5-5-8 triangle from the beginning of the project!

So, a fun project connecting a neat geometry problem that we’ve studied before with a new homework problem.

A project for kids inspired by Nassim Taleb and Alexander Bogomolny

I woke up yesterday morning to see this problem posted on twitter by Alexander Bogomolny:

About a two months ago we did a fun project inspired by a different problem Bogomolny posted:

Working through an Alexander Bogomolny probability problem with kids

It seemed as though this one could be just as fun. I started by introducing the problem and then proposing that we explore a simplified (2d) version. I was excited to hear that the boys had some interesting ideas about the complicated problem:

Next we went down to the living room to explore the easier problem. The 2d version, |x| + |y| \leq 1, is an interesting way to talk about both absolute value and lines with kids:

Next we returned to the computer to view two of Nassim Taleb’s ideas about the problem. I don’t know why the tweets aren’t embedding properly, so here are the screen shots of the two tweets we looked at in this video. They can be accessed via Alexander Bogomolny’s tweet above (which is embedding just fine . . . .)

Taleb1

Taleb2

The first tweet reminded the boys of a different (and super fun) project about hypercubes inspired by a Kelsey Houston-Edwards video that we did over the summer:

One more look at the Hypercube

The connection between these two projects is actually pretty interesting and maybe worth an entire project all by itself.

Next we returned to the living room and made a rhombic dodecahedron out of our zometool set. Having the zometool version helped the boys see the square in the middle of the shape that they were having trouble seeing on the screen. Seeing that square still proved to be tough for my younger son, but he did eventually see it.

After we identified the middle square I had to boys show that there is also a cube hiding inside of the shape and that this cube allows you to see surprisingly easily how to calculate the volume of a rhombic dodecahedron:

Finally, we wrapped up by using some 3d printed rhombic dodecahedrons to show that they tile 3d Euclidean space (sorry that this video is out of focus):

Definitely a fun project. I love showing the boys fun connections between algebra and geometry. It is also always tremendously satisfying to find really difficult problems that can be made accessible to kids. Thanks to Alexander Bogomolny and Nassim Taleb for the inspiration for this project.

Steve Phelp’s 3d pentagon

Sorry that this post is written in a bit of a rush . . . .

I saw a neat tweet from Steve Phelps earlier in the week:

The shape sort of stuck in my mind and last night I finally got around to making two shapes inspired by Phelp’s shape. My shapes are not the same as his – one of my ideas for this project was to see if the boys could see that the shapes were not the same.

So, we started today’s project by looking at the two shapes I printed overnight. As always, it is really fun to hear kids talk about shapes that they’ve never encountered before.

Next we looked at Phelp’s tweet. The idea here was to see if the boys could see the difference between this shape and the shapes that I’d printed:

Finally, we went up to the computer so that the boys could see how I made the shapes. Other than some simple trig that the boys have not seen before, the math used to make these shapes is something that kids can understand. We define a pentagon region by 5 lines and then we vary the size of that region.

I’m not expecting the boys to understand every piece of the discussion here. Rather, my hope is that they are able to see that creating the shapes we played with today is not all that complicated and also really fun!

This was a really fun project – thanks to Steve Phelps for the tweet that inspired our work.

A problem about cones for kids courtesy of Dan Anderson

Saw a fun tweet from Dan Anderson when I got up this morning:

Here’s a direct link to the CNN article:

The artificial glacier growing in the desert

The article is interesting all by itself, and the mathematical question Dan is asking was the subject of our project this morning.

First I asked the boys to read the article – here’s what they thought:

I was happy that the idea about the cone having the least surface area for a given volume came up when the boys were summarizing the article. We now moved on to investigating that question.

We first looked at a cube:

The calculations for the cube were pretty easy. Now we moved on to a slightly more complicated shape -> half of a sphere.

Working through the various volume and surface area formulas is a nice introductory algebra exercise for kids:

Now we moved on to looking at cones. Looking carefully at cones is quite a bit more complicated than looking at cubes or spheres. So, first we played with the formulas and reduced the surface area formula to one variable. We got that formula at the end of this movie:

The formula we found in the last video was a bit complicated, so we moved to Mathematica for a bit of help. The graph of the surface area for different values of radius of the cone is a shape that the boys haven’t seen before.

It was fun to talk about how this shape could be helpful in studying the question that Dan asked in the tweet.

It was also fun for me to hear how they thought about ways to zoom in on the minimum.

Definitely a fun project – would be especially good for a calculus class, I think.

Some beautiful geometry in a challenge problem from Alexander Bogonolny

I did the project below with the boys on Sunday before they went off to camp for a week. The idea wasn’t to get into heavy math, but rather just a relaxed walk through some fun shapes. We got one detail wrong in the 4th video which I was sort of kicking myself for, but then I saw a tweet from Nassim Taleb showing some of the geometry in a different problem that Alexander Bogonolny had posted and it made me realize the connection between the algebra and geometry in our problem was still fun to show:

So, despite the error I thought I would publish the project anyway.

Here’s the original problem:

Below are the videos showing our walk through the geometry. First, though, here’s the quick introduction to the problem:

After that intro we looked at the region described by the constraint in the problem. We have to thicken up the region a little bit using the absolute value function in order to see it, so the Mathematica code looks a bit more complicated than in the problem, but that extra complexity is just to make the picture easier to see.

One cool thing about our discussion here is that my younger son thought there should be 3 fold symmetry in the shape because there was 3 fold symmetry in the equation 🙂

Now we looked at the situation in which the surface achieves the maximum value subject to the constraint in the problem. My younger son made the nice observation that the two surfaces appeared to be “blending together” at certain points. That “blending” is an important idea in Lagrange Multipliers – though, don’t worry, we aren’t going down that path today.

Next we looked at the minimum value of the surface subject to the constraint in the problem. The error I made here was accidentally reversing the two surfaces. The fixed surface – the one describing the constraint – is now on the outside rather than the inside.

Finally, I asked the kids to pick a value smaller than 45/4 for the curve so that we could see what happened. Unfortunately they picked 7 which is too small – there’s no surface! – so they chose 10 and that allowed us to see that the shrinking surface inside of the original shape. Also we can see fairly clearly (after some rotation) that the two shapes do not intersect.

Definitely a fun project showing the boys a beautiful side of a really challenging problem.

Exploring a neat problem from James Tanton

I didn’t have an specific project planned for today and was lucky enough to see a really neat problem posted by James Tanton:

I didn’t show the tweet to the boys because I thought finding the patterns would be a good exercise for kids. We started with the k = 0 case. This case is also good for making sure that kids understand the basics of functions required to explore this problem:

Next we looked at the k = 1 case.

Next we looked at the k = 2 case and then my younger son made a really fun little conjecture 🙂

At the end of the last video my younger son thought that the k = 3 case might produce the pentagonal numbers. I had to look up those numbers ( 🙂 ) while the camera was off, but I found them and we checked:

We ended by looking at Tanton’s challenge problem -> what happens when k = -1? I had the boys take a guess and then we looked at the first few terms and the boys were, indeed, able to solve the problem!

The boys had a lot of fun playing around with this problem and I was really excited they found a different pattern than the one Tanton was asking for!

Sharing a Craig Kaplan post with kids part 2

Yesterday we used a recent post from Craig Kaplan as a way to talk a little bit about algebra and geometry:

Here’s that project:

Sharing a Craig Kaplan post with kids

After the project I printed 12 of the pentagons and had the kids play with them today. See Kaplan’s post for some historical notes about the pentagon. The historical importance is probably too advanced for kids to appreciate, but what they can appreciate is that this pentagon can be surrounded in multiple ways. I had the boys play around to see what they could find.

Here’s what my younger son found:

Here’s what my older son found:

This project was really neat. I think making shapes like the one in Kaplan’s post is a great way for kids to review (or even get introduced to!) both equations of lines and some elementary geometry. Also, as always, it is extremely fun for kids to explore ideas that are interesting to professional mathematicians 🙂

\