In December Po-Shen Loh made a video about a really neat approach to the quadratic formula:
We did a project using the ideas of sums and products of roots at the time, and I wanted to revisit the idea tonight now that my son is studying complex numbers. An idea I thought would be fun was to explore was how to use the sum and product of roots ideas for quadratic functions to calculate the cosine of 72 degrees.
I started with a quick review of the main ideas we’d be using in this project as it has been several months since we went through Po-Shen Loh’s idea:
Now we dove into the problem of finding the roots of the equation .
Now we moved to the main idea in the project – how can we factor the polynomial we found in the last video – – into two quadratic polynomials?
The work here is a little tricky, but my son got through it really well. The ideas here are definitely accessible to students who have learned a little bit about polyomials and sums and products of roots.
Finally, we solved for the roots of the quadratic equation (I accidentally wrote this equation wrong, so we get off to a bad start. Luckily we caught the error after about a minute.)
Solving this equation gives us the value of cos(72)!
It was really fun to see that the combination of introductory ideas from complex numbers, polynomials, and sums / products of roots of quadratics could help us calculate the value of cos(72). I’m excited to play around with Po-Shen Loh’s idea a bit more and see where else we can find some fun applications!