# When Cos(x) is larger than 1

My son stumbled on an amazing graph completely by accident the other day. He’s doing some work reviewing trig functions this week and I asked him to just play around with some graphs in Mathematica to get a feel for how Sin[x] and Cos[x] behave. One of the graphs he drew was: $y = \cos( \sqrt{x})$ from $x = -100$ to $100$: I certainly wasn’t expecting him to make a graph like this one, but was happy that he did. Yesterday we talked through what was going on.

We started by discussing why the graph seemed so strange:

Now we dove into some of the details – which involve complex numbers and the definition: $e^{i \theta} = \cos(\theta) + i \sin(\theta)$

as well as the definition of even and odd functions. So, there’s a lot of math to that we need to bring to the table to understand what’s going on in our graph.

Finally, we calculated the exact value of $\cos(7i)$. Again, there’s a lot of advanced math that comes in to the calculation here – but even if some of the math ideas took a bit to sink in, I’d say that all in all it was a good conversation: