Exploring a fun number fact I heard on Wrong but Useful

I was listening to the latest episode of Wrong but Useful today:

The Wrong but Useful podcast on Itunes

During the podcast the following “fun fact” came up -> \ln(2)^5 \approx 0.16.

I thought exploring this fact would be a fun activity for the boys and spent the next 30 min daydreaming about how to turn it into a short project. I also wanted the project to be pretty light since today was the first day of school for them. Eventually I decided to explore various expressions of the form \ln(M)^N via continued fractions and see what popped up.

We started by looking at the approximation given in the podcast. During the course of the discussion we got to talk about the relationship between fractions and decimals:

Now we looked at some powers of \ln(3) until the phone rang. We found a neat relationship with the 5th power. This relationship was also mentioned in the podcast.

While I was on the phone I asked the boys to explore a little bit. Here’s what they showed me when I got back.

Oh, wait – EEEk – I just noticed writing this up that we counted back incorrectly in this video. Whoops! Here’s the number we thought we were exploring -> \ln(12)^{15} is very nearly equal to 850,454 + 19,118 / 28207.   The next approximation that is better is 850,454 + 33,481,089 / 49,398,529.

You can see in the pic below that the 19,118/28,207 is accurate to 12 decimal places!

Sorry for this mixup.

Continued Fraction

Next they showed me one more good approximations that they found -> \ln(8)^{18} is nearly an integer. After that I tried to show them one I found but we ran into a small technical problem, so no need to watch the rest of the video after we finish with \ln(8)^{18}.

Finally, I got the technical glitch fixed and showed them that \ln(11)^2 is approximately 5 3/4. The next better approximation is 5 + 1,907 / 2,543

So, a fun little number fact to study. Sorry for the bits of the project that went wrong, but hope the idea is still useful!